phmg.net
当前位置:首页 >> y=ArCtAn2x的导数怎么求 >>

y=ArCtAn2x的导数怎么求

y=arctan2x的导数 y'=2/(1+4x^2)

不知道你所说的解释是什么,由(arctanx)'=1/(1+x^2),得arctan 2x=1/(1+4x^2)*2=2/(1+4x^2). 如果是想知道(arctanx)'=1/(1+x^2),下面给出:y=tan x ,(tan x)'=dy/dx=1/(cosx)^2,arc tanx 是其反函数。由1/(cosx)^2=tan^2+1,得 dx/dy=(cosx)^2...

书上有公式,属于基本函数求导

见图

∂z/∂x=1/(1+y²/x²)*(-y/x²)=-y/(x²+y²) ∂z/∂y=1/(1+y²/x²)*1/x=x/(x²+y²) ∂²z/∂x²=y/(x²+y²)*2x=2xy/(x²+y²)² ∂&...

解:先把f(x)在x=0处展成无穷级数. 因为f'(x)=[arctan(1-2x/1+2x]'= -2/(1+4x^2), 所以f(x)-f(0)=∫(0->x) f'(t)dt=∫(0->x) -2/(1+4x^2)dt=(-2)∫(0->x) ∑(-4x^2)^n dx =(-2)∑[(-4)^n]*[x^(2n+1)/(2n+1)] 所以f(x)=π/4+(-2)∑[(-4)^n]*[x^(2n+1)/(2...

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com