phmg.net
当前位置:首页 >> 用分部积分法怎么做 >>

用分部积分法怎么做

∫e^xcosxdx =∫e^xdsinx =e^xsinx-∫sinxe^xdx =e^xsinx+∫e^xdcosx =e^xsinx+e^xcosx-∫cosxe^xdx 移项,2∫e^xcosxdx=e^xsinx+e^xcosx 所以原式=1/2*e^x(sinx+cosx)+C

分部积分,integral by parts,是适用于三种情况的积分方法: 1、可以逐步降低幂次的积分 例如: ∫x⁴sinxdx = -∫x⁴dcosx = -x⁴cosx + 4∫x³cosxdx + c 这样一来,x 的幂次就降低了,以此类推,就积出来了。 2、可以将对数...

字写得不错

不用分部积分可以直接求

看图详解: ~如果您认可我的回答,请及时点击【采纳为满意回答】按钮~ ~手机提问者在客户端上评价点【满意】即可~~ ~您的采纳是我前进的动力~~ ~如还有问题,可以【追问】~~ ~祝学习进步,更上一层楼!O(∩_∩)O~

1、本题是典型的用分部积分的类型; 积分过程还用到了国内盛行的凑微分方法。 2、具体解答如下,如有疑问,欢迎追问,有问必答,有疑必释。 3、若点击放大,图片将会更加清晰。

如上图所示。

1

先换元再分部

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com