phmg.net
当前位置:首页 >> 行最简形 >>

行最简形

定义一个行阶梯形矩阵若满足 (1) 每个非零行的第一个非零元素为1; (2) 每个非零行的第一个非零元素所在列的其他元素全为零,则称之为行最简形矩阵. 定义 如果一个矩阵的左上角为单位矩阵,其他位置的元素都为零,则称这个矩阵为标准形矩阵. ( 区别...

行最简形矩阵转换的技巧: 1. 一般是从左到右,一列一列处理。 2. 尽量避免分数的运算。 具体操作: 1. 看本列中非零行的首非零元 若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零. 2. 否则, 化出一个公因因子。 行最简形矩阵简介 在...

用初等行变换化行最简形的技巧 1. 一般是从左到右,一列一列处理 2. 尽量避免分数的运算 具体操作: 1. 看本列中非零行的首非零元 若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零. 2. 否则, 化出一个公因子 给你个例子看看吧. 例: 2 ...

2 3 1 -3 -7 1 2 0 -2 -4 3 -2 8 3 0 2 -3 7 4 3 第1行交换第2行 1 2 0 -2 -4 2 3 1 -3 -7 3 -2 8 3 0 2 -3 7 4 3 第2行,第3行,第4行, 加上第1行×-2,-3,-2 1 2 0 -2 -4 0 -1 1 1 1 0 -8 8 9 12 0 -7 7 8 11 第1行,第3行,第4行, 加上第2行×2,-8,-...

阶梯形矩阵的特点:每行的第一个非零元的下面的元素均为零,且每行第一个非零元的列数依次增大,全为零的行在最下面 行简化矩阵的特点:每行的第一个非零元均为1,其上下的元素均为零,且每行第一个非零元的列数依次增大,全为零的行在最下面。

首先它是阶梯形式,每一行的首个元素(不是指每一行第一列的元素,而是阶梯的第一个)为1。

这题我刚做过,应该也是你问的吧 1、第2和第4行提取公因数 2、第2行-第1行,第3行+第1行,第4行-第1行 3、第2~4行提取公因数 4、第3行-第2行,第4行-第2行,第1行-9×第2行 得到行最简矩阵 具体过程如下:

这个不一定唯一,阶梯唯一,但是矩阵里面的数可以不是最简,但是行矩阵最简行绝对是唯一的!

一个矩阵成为阶梯型矩阵,需满足两个条件: (1)如果它既有零行,又有非零行,则零行在下,非零行在上。 (2)如果它有非零行,则每个非零行的第一个非零元素所在列号自上而下严格单调上升。 阶梯型矩阵的基本特征: 如果所给矩阵为阶梯型矩阵...

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com