phmg.net
当前位置:首页 >> 行最简形矩阵怎么化 >>

行最简形矩阵怎么化

把矩阵化为行最简形矩阵的方法是指对矩阵做初等的行变换,将矩阵化为阶梯形。 化简矩阵的目的是找到一个和原矩阵等价的,形式比较简单的矩阵,如上三角形,下三角形等。原矩阵和化简后的矩阵等价是指它们可以互相表出。 化简的方法主要有: 1.某...

参考这个 http://zhidao.baidu.com/question/319559808.html 若不行就题目拿来 我帮你

用初等行变换化行最简形的技巧 1. 一般是从左到右,一列一列处理 2. 尽量避免分数的运算 具体操作: 1. 看本列中非零行的首非零元 若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零. 2. 否则, 化出一个公因子 给你个例子看看吧. 例: 2 ...

使用初等行变换进行转换, 0 2 -3 1 0 3 -4 3 0 4 -7 -1 r2-r1,r3-2r1 ~ 0 2 -3 1 0 1 -1 2 0 0 -1 -3 r1-2r2,r2-r3,r3*(-1) ~ 0 0 -1 -3 0 1 0 5 0 0 1 3 r1+r3,交换行次序 ~ 0 1 0 5 0 0 1 3 0 0 0 0 这样就化成了行最简形矩阵

用初等行变换化行最简形的技巧 1. 一般是从左到右,一列一列处理 2. 尽量避免分数的运算 具体操作: 1. 看本列中非零行的首非零元 若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零. 2. 否则, 化出一个公因子 给你个例子看看吧. 例: 2 ...

行最简形矩阵转换的技巧: 1. 一般是从左到右,一列一列处理。 2. 尽量避免分数的运算。 具体操作: 1. 看本列中非零行的首非零元 若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零. 2. 否则, 化出一个公因因子。 行最简形矩阵简介 在...

用初等行变换化行最简形的技巧 1. 一般是从左到右,一列一列处理 2. 尽量避免分数的运算 具体操作: 1. 看本列中非零行的首非零元 若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零. 2. 否则, 化出一个公因子

把矩阵化为行最简形矩阵的方法 是指对矩阵做初等的行变换,将矩阵化为阶梯形。化简矩阵的目的是找到一个和原矩阵等价的,形式比较简单的矩阵,如上三角形,下三角形等。原矩阵和化简后的矩阵等价是指它们可以互相表出。这在求解线性方程组,求矩...

【知识点】 若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn 【解答】 |A|=1×2×...×n= n! 设A的特征值为λ,对于的特征向量为α。 则 Aα = λα 那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α 所以A²-A的特征值...

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com