phmg.net
当前位置:首页 >> 数列通项公式的求法. >>

数列通项公式的求法.

1、用累加法求an=an-1+f(n)型通项 2、用累积法求an= f(n)an-1型通项 3、用待定系数法求an=Aan-1+B型数列通项 4、通过Sn求an 5、取倒数转化为等差数列 6、构造函数模型转化为等比数列 7、数学归纳法 普遍的方法举例: (1)数列{an}满足a...

等差数列: 公差通常用字母d表示,前N项和用Sn表示 通项公式an an=a1+(n-1)d an=Sn-S(n-1) (n≥2) an=kn+b(k,b为常数) 前n项和 Sn=n(a1+an)/2 等比数列:公比通常用字母q表示 通项公式 an=a1q^(n-1) an=Sn-S(n-1) (n≥2) 前n项和 当q≠1时,等比数...

还要求法?直接公式不行吗?

例如等差数列,an+1=an+d an=an-1+d=(an-2+d)+d=(an-3+d)+d+d…… =a1+(n-1)d 这就是迭代法,这里用了一个最简单的例子. 许多复杂的数列,不像等差数列

求数列的通项公式一般地有以下几个原则: 1)如果已知的数列中有正有负,那么先确定正负号,一般用(-1)^n或(-1)^(n-1)来表示正负号 其中(-1)^n表示奇数项是负的情形,另一个表示奇数项是正的情形 2)在确定正负号以后就不再考虑正负号,只要把...

1、用累加法求an=an-1+f(n)型通项 2、用累积法求an= f(n)an-1型通项 3、用待定系数法求an=Aan-1+B型数列通项 4、通过Sn求an 5、取倒数转化为等差数列 6、构造函数模型转化为等比数列 7、数学归纳法 普遍的方法举例: (1)数列{an}满足a...

例如等差数列,an+1=an+d an=an-1+d=(an-2+d)+d=(an-3+d)+d+d…… =a1+(n-1)d 这就是迭代法,这里用了一个最简单的例子. 许多复杂的数列,不像等差数列这么容易求的时候,求通项公式往往用迭代法.

一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。 例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。 解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用...

求数列通项公式的方法: 1,已知前n项和Sn →利用进行求解。 2,已知递推关系 →用待定系数法,得新数列(等比or等差),用求和公式求出新数列的通项公式,从而求解原数列的通项公式。 →其他方法:寻找数列的周期,取倒数,换元法(碰到根号),迭...

1、找规律 2、累加法3、累乘法4、倒叙相加法

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com