phmg.net
当前位置:首页 >> 求1/1+sinx的不定积分 >>

求1/1+sinx的不定积分

∫1/sinx dx =∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式 =∫1/[sin(x/2)cos(x/2)] d(x/2) =∫1/tan(x/2)*sec²(x/2) d(x/2) =∫1/tan(x/2) d[tan(x/2)], [注∫sec²(x/2)d(x/2)=tan(x/2)+C] =ln|tan(x/2)|+C, (答案一) 进一步化简: =ln|sin(x/2...

转换方法:

三角变换后,分别凑微分 过程如下图:

凑微分就够了

解:分享一种解法。∵1/(cosx+sinx)=(1/√2)/cos(x-π/4)=sec(x-π/4)/√2, ∴∫dx/(cosx+sinx)=(1/√2)∫sec(x-π/4)dx=(1/√2)ln丨sec(x-π/4)+tan(x-π/4)丨+C。供参考。

令t=tan(x/2),则x=2arctant,所以dx=2/(1+t^2)dt 由万能公式:sinx=2tan(x/2)/(1+(tan(x/2))^2)=2t/(1+t^2), 则原式=(1/2)∫d(t+1/2)/[(t+1/2)^2+(根号3/2)^2] =(1/根号3)arctan[2(t+1/2)/根号3]+C =(1/根号3)arctan[2(arctan(x/2)+1/2)/根号3]+C

题目疑为 1/(sinx)^2,否则得不到原函数 思路:凑微分 过程:参考下图

答案是ln/sinx/(sinx+1)/+c

∫sinx/(1+cosx)dx =-∫1/(1+cosx)d(cosx+1) =-ln(cosx+1)+C

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com