phmg.net
当前位置:首页 >> 求值ArCtAn( Cot2),tAn(1/2ArCCos4/5), Cos[ArC... >>

求值ArCtAn( Cot2),tAn(1/2ArCCos4/5), Cos[ArC...

关键是饭三角函数的值域 arcsin[-π/2,π/2] arccos[0,π] arctan[-π/2,π/2] arccot[0,π] arctan(tan(π/2-2)) -π/2 tan(1/2arccos4/5)=1/3 x=arxsin(-3/5) x属于[-π/2,π/2] cos(arcsin(-3/5)) =cosx =4/5 arcsin(cos1/3) arcsin(sin(π/2-1/3)) =π/2...

有一个就够了,因为arcsinx=π/2-arccosx,在C中取出一个π/2就能进行转换

解: arcsinx+arccosx=π/2 arctanx和arccotx=π/2

cos[arccos(cot5π/4)]=cot5π/4=-√2/2 sin[arccos(cot5π/4)]=√2/2

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com