phmg.net
当前位置:首页 >> 高中数学:正弦余弦定理,有没有正切定理? >>

高中数学:正弦余弦定理,有没有正切定理?

有 解析: (a-b)/(a+b)=[tan(A-B)/2]/[tan(A+B)/2] (b-c)/(b+c)=[tan(B-C)/2]/[tan(B+C)/2] (c-a)/(c+a)=[tan(C-B)/2]/[tan(C+B)/2] 证明方法: 运用正弦定理和半角公式

正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。 余弦定理的公式为: cosA=(b²+c²-a...

正弦定理:设三角形的三边为a b c,他们的对角分别为A B C,外接圆半径为r,则称关系式a/sinA=b/sinB=c/sinC为正弦定理。 余弦定理:设三角形的三边为a b c,他们的对角分别为A B C,则称关系式 a^2=b^2+c^2-2bc*cosA b^2=c^2+a^2-2ac*cosB c^2=...

倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos...

如右图,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对于AB与AC的夹角∠BAC而言: Rt△ABC 邻边(adjacent)b=AC 对边(opposite)a=BC 斜边(hypotenuse)h=AB 邻边(adjacent)b=AC 基本函数 英文 缩写 表...

如右图,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对于AB与AC的夹角∠BAC而言: Rt△ABC 邻边(adjacent)b=AC 对边(opposite)a=BC 斜边(hypotenuse)h=AB 邻边(adjacent)b=AC 基本函数英文缩写表达式...

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1...

乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2)  a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根与系数的关...

三角形的边角关系: 1:正弦定理 a/sinA=b/sinB=c/sinC 2:余弦定理 a²=b²+c²-2bccosA b²=a²+c²-2accosA c²=a²+b²-2abcosA 3:正切定理 tan[(A-B)/2]= tan(C/2) (a-b)/(a+b)或 (a+b) tan[(A-B)/2]...

一、集合、简易逻辑(14课时,8个) 1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件. 二、函数(30课时,12个) 1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; ...

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com