phmg.net
当前位置:首页 >> 不动点法解数列通项公式问题 >>

不动点法解数列通项公式问题

当f(x)=x时,x的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 典型例子: a(n+1)=(a(an)+b)/(c(an)+d) 注:我感觉一般非用不动点不可的也就这个了,所以记住它的解法就足够了。 我们如果用一般方法解决此题也不是不可以,只是又...

当f(x)=x时,x的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 典型例子: a(n+1)=(a(an)+b)/(c(an)+d) 注:我感觉一般非用不动点不可的也就这个了,所以记住它的解法就足够了。 我们如果用一般方法解决此题也不是不可以,只是又...

这个真要解释清楚需要用到大学数学中线性代数和组合数学的知识,很麻烦,高中阶段你只要会用并能证明其正确性即可…… 证明如下: 特徵方程法: a(n+2)=p*a(n+1)+q*an 其特征方程为x^2-p*x-q=0 i.若其有两个不相等的根(称作特征根)α、β 则an=A*α...

什么样的数列可以用不动点法求通项形如a(n+1)=[Aa(n)+B]/[Ca(n)+D]的都可以;其实很多数列都可以解出不动点来试试的……

有形如a(n+1)=f(an)的递推数列,可考虑用不动点法。 所谓不动点是指使方程f(x)=x成立的x叫函数f(x)不动点。 在上述数列中,使用不动点法如f(x)=ax+b,f(x)=(ax+b)/(cx+d)等类型。

高中数学数列特征根的原理是韦达定理: 对于形如a(n+2)=p*a(n+1)+q*a(n)的式子,总是存在 r、s 使 a(n+2)-r*a(n+1)=s[a(n+1)-r*a(n)] ,化简得 a(n+2)=(s+r)*a(n+1)-sr*a(n) ,即s+r=p,sr=-q,由韦达定理可知,r、s 就是一元二次方程 x^2-px-q=...

递推式: a(n+1)=(A*an+B)/(C*an+D) (n∈N*,A,B,C,D为常数,C不为0,AD-BC不为0,a1与a2不等) 其特征方程为x=(A*x+B)/(C*x+D) 特征方程的根称为该数列的不动点 这类递推式可转化为等差数列或等比数列 1)若x=(A*x+B)/(C*x+B)有两个不等的根α、...

这是高中数学竞赛的内容,高考数学也可以不掌握

……

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com