phmg.net
当前位置:首页 >> ∫(sinx)^(%1/2)Dx= >>

∫(sinx)^(%1/2)Dx=

(sinx)^2=1-(cosx)^2=(tanx)^2/(1+(tanx)^2) 原式=∫(1+(tanx)^2)dx/(3+4(tanx)^2) =(1/3)∫(secx)^2dx/(1+((2/√3)tanx)^2) =(1/3)*(√3/2)∫d((2/√3)tanx)/(1+((2/√3)tanx)^2) 设t=(2/√3)tanx 原式=(√3/6)∫dt/(1+t^2) =(√3/6)arctan(t) =(√3/6)arct...

1+cosx=2cos²(x/2) sinx=2sin(x/2)cos(x/2) 所以 ∫(1+cosx)^(1/2) / sinx dx=根号(2)/2 ∫ |cos(x/2)|/【sin(x/2)cos(x/2)】 dx 得看cos(x/2)是正数还是负数 若cos(x/2)>0 元积分=根号(2) ∫ csc(x/2)d(x/2) =根号(2) ln|csc(x) - ctan(x)|+C...

解:分享一种解法。 将积分区间[0,2π]拆成[0,π/2)∪[π/2,π)∪[π,3π/2)∪[3π/2,2π),则∫(0,2π)dx/(2+sinx)=∫(0,π/2)dx/(2+sinx)+∫(π/2,π)dx/(2+sinx)+∫(π,3π/2)dx/(2+sinx)+∫(3π/2,2π)dx/(2+sinx),对后三个积分,分别设x=t+π/2、t+π、t+3π/2,则 ∴∫...

解:分子分母同除以(cosx)^2得: 然后套公式:

令f(x)=(sinx)^3 /(1+x^2) 显然f(-x)= (sin-x)^3/(1+x^2)= -(sinx)^3/(1+x^2) 所以f(x)+f(-x)=0 即f(x)为奇函数, 那么积分之后得到∫ f(x) dx是偶函数, 即F(x)= F(-x) 所以代入互为相反数的上下限2和 -2 得到原积分=F(2) -F(-2)=0 故定积分值为0

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。

我知道

该题可用分部积分法如图计算。经济数学团队帮你解答,请及时采纳。谢谢!

令u=tan(x/2),则sinx=2u/(1+u^2),dx=2du/(1+u^2) 原式=∫1/[1+4u/(1+u^2)]*2du/(1+u^2) =∫2du/(1+u^2+4u) =∫2du/[(u+2)^2-3] =∫2du/(u+2+√3)(u+2-√3) =(√3/3)*[∫du/(u+2-√3)-∫du/(u+2+√3)] =(√3/3)*[ln|u+2-√3|-ln|u+2+√3|]+C =(√3/3)*[ln|tan(...

设 x = sint, -PI/2

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com