phmg.net
当前位置:首页 >> ∫ (1/1+sinx^2)Dx >>

∫ (1/1+sinx^2)Dx

解:分子分母同除以(cosx)^2得: 然后套公式:

您好,答案如图所示: 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”

(sinx)^2=1-(cosx)^2=(tanx)^2/(1+(tanx)^2) 原式=∫(1+(tanx)^2)dx/(3+4(tanx)^2) =(1/3)∫(secx)^2dx/(1+((2/√3)tanx)^2) =(1/3)*(√3/2)∫d((2/√3)tanx)/(1+((2/√3)tanx)^2) 设t=(2/√3)tanx 原式=(√3/6)∫dt/(1+t^2) =(√3/6)arctan(t) =(√3/6)arct...

1+cosx=2cos²(x/2) sinx=2sin(x/2)cos(x/2) 所以 ∫(1+cosx)^(1/2) / sinx dx=根号(2)/2 ∫ |cos(x/2)|/【sin(x/2)cos(x/2)】 dx 得看cos(x/2)是正数还是负数 若cos(x/2)>0 元积分=根号(2) ∫ csc(x/2)d(x/2) =根号(2) ln|csc(x) - ctan(x)|+C...

我知道

设 x = sint, -PI/2

令x=sint, 则√(1-x²)=cost, dx=costdt ∴原式=∫ cost/(sint+cost) dt =(1/2)∫[(cost+sint)+(cost-sint)]/(sint+cost)] dt =(1/2)∫ dt + (1/2)∫(cost-sint)/(sint+cost) dt =t/2 + (1/2)∫d(sint+cost)/(sinx+cosx) =(1/2)(t+ln|sint+cost|) +...

此题一般都是出现在定积分中,给对称区间,然后利用被积函数是奇函数的性质,答案是0。 函数原函数是超越的,不会作为考试要求的。

令f(x)=(sinx)^3 /(1+x^2) 显然f(-x)= (sin-x)^3/(1+x^2)= -(sinx)^3/(1+x^2) 所以f(x)+f(-x)=0 即f(x)为奇函数, 那么积分之后得到∫ f(x) dx是偶函数, 即F(x)= F(-x) 所以代入互为相反数的上下限2和 -2 得到原积分=F(2) -F(-2)=0 故定积分值为0

令t=tan(x/2),则x=2arctant,所以dx=2/(1+t^2)dt 由万能公式:sinx=2tan(x/2)/(1+(tan(x/2))^2)=2t/(1+t^2), 则原式=(1/2)∫d(t+1/2)/[(t+1/2)^2+(根号3/2)^2] =(1/根号3)arctan[2(t+1/2)/根号3]+C =(1/根号3)arctan[2(arctan(x/2)+1/2)/根号3]+C

网站首页 | 网站地图
All rights reserved Powered by www.phmg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com